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Modeling leaky faucet dynamics
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The variety of phenomena showed by a dripping faucet is interpreted in terms of simple one-dimensional
relaxation oscillator models with different mechanisms of release of the drops. These models present most of
the characteristic features of experimental data. Simulations are carried out, in order to link the parameters and
the mechanisms of release of the models to the physical properties of the f&ic#3-651X%97)12506-5

PACS numbegps): 02.70—c, 47.52:+j

[. INTRODUCTION models and their capability of reproducing the characteristics
of the dynamics of the leaky tap. In R¢L3] only one of the
In recent years, there has been increasing interest in thmodels presented in this paper is analyzed, making two dif-
study of dripping faucet dynamics. The suggestion that thderent suppositions about the mass of the drop breaking
drips falling from a leaky faucet might exhibit chaotic tran- away. Conversely, in this paper two different mechanisms of
sitions as the flow rate is varied was first proposed byebound are compared with a single way of formation of the
Rossler[1]. This prediction was experimentally confirmed falling drop.
afterwards by Shaw and co-work€r,3]. Since then, the Our studies show that the models reproduce many quali-
nonlinear behavior of a dripping faucet during the transitiontative features of the real system, and exhibit attractors very
to chaos has been examined experimentally by several agimilar to those found experimentally. In particular, single
thors [4—-10]. The broad range of dynamical behavior, in- and multiple closed-loop patterns, such as those reported in
cluding period doubling, hysteresis, and chaos, shown by thRef. [5], are obtained; to our knowledge, these structures
dripping faucet, is characteristic of a relaxation oscillatorhave not been reproduced by previous simulation models.
when internal oscillations are stimulated during the rapidMoreover, the evolution of the loop pattertisom a periodic
transition after a threshold is reached, and may be found istate to a chaotic attracjalake place by distortion followed
many physical systems such as brakes engaged frictionally toy folding, and this has an equivalent among the experiments
a rotating shaft, electric relaxation oscillators, or magnetofor the actual dripping system.
spheric substorm$l1]. Thus the dripping faucet presents |n the final part of the paper a comparison is made be-
itself as a sort of “guide system” for modeling analog physi- tween attractors obtained experimentally by(using an ex-
cal systems. perimental apparatus similar to that of Wu and Schisly
In the leaky tap, a continuous flow of water builds up until 3nq that obtained by simulation. Also from this analysis, a

the drop, subjected to the weight and to the attractive forcgooq qualitative agreement comes out between numerical
of the molecules, reaches a threshold point. Then a drop,q experimental attractors.

deta_ches_ and fa”S.' stimulating a rek_Jound af‘d mechanica_ll vi- The paper is organized as follows. In Sec. Il modeling of
brations in the residual water, gffectlng the tl_me of formatlon,[he dripping faucet dynamics is described, and in Sec. Ill
of the next drop. Thus the fa”'”9 drop.has.mﬂuence on thedripping spectra at increasing flow rate are reported together
motion of the next forming drop: the time intervaly, be- with dripping time delay diagrams obtained at selected val-

tween successive drop detachments become irregular or cha- : :
otic at certain values of flow rate. ues of the flow rate. In Sec. IV results are discussed in con-

As for the modeling of the dripping faucet dynamics, up nection with attractors obtained allowing variations of some

to now the attempts made to explain the phenomena Odpodel parameters. The capability of our models of reproduc-

served, as far as we know, are the variable-mass oscillator 819 Some experimental data is shown in Sec. V. Finally, con-
Shaw[2,3], the electrical analog oscillator of Bernhafdd], ~ clusions are drawn in Sec. VI.
the one-dimensional feedback loop of Ausi®l, and, re-
cently, two different model§12,13 which improve upon
Shaw’s variable-mass oscillator. Il. SIMULATION MODELS
The purpose of this work is to describe the results of
investigations performed by using the modified oscillator The behavior of the dripping faucet can be modeled as the
models proposed if13], to show the flexibility of these one-dimensional motion of a variable madsattached at a
spring of elastic constark, subjected to the gravitational
force Mg and to a frictional force proportional to the speed
*Electronic address: Dinno@le.infn.it v of the growing mass. The set of first-order differential
TElectronic address: Renna@le.infn.it equations of the model af&]
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FIG. 1. PS dripping spectruniT(s)] plotted against flow rateR (g/9. The values of the parameters amg=980 cm/d, x.
=0.25 cm, k=475 dyn/cmb=1 g/s, anda=0.5 s/cm; 50 points are used at each valu®pand 4x 10* points for the whole plot.
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FIG. 2. Two successive enlargements of the spectrum of Fig. 1, showing the transition to a period-1 attractor through tangent intermit-
tence.(Units as in Fig. 1.
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FIG. 3. An enlargement of a region of the spectrum of Fig. 1 showing a period-doubling route to(chasss in Fig. 1.
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FIG. 4. Dripping time[T, (s)] delay diagrams fo(a) R=0.3, (b) R=0.5,(c) R=0.65, andd) R=0.7 (units of g/3; remaining parameters
and units of time intervals are the same as in Fig. 1.
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FIG. 6. Power spectra corresponding to the time series of Fignis of f are drops?).
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wherex is the coordinate of the center of mass of the form'liquid can be modeled in a different way:

ing drop, andR is the flow rate. The spring constaktrep-

resents surface tension, andepresents friction between the
fluid and the faucet. When the drop position exceeds &
thresholdx., the masdM is suddenly reduced by an amount
proportional to the speed of the drop, thus simulating th

falling away of the drop.

As remarked by Bernharfdl 1], the nonlinearity required
to yield chaos is the swift change at the threshald This

change is represented by the release of mass of the drop al

by the rebound of the residue water. In our modéf], and
independently in the relaxation oscillator model of Rég],
the mass of the falling drop is supposed to be

AM=aM.,

)

wherev. is the speed ant. the mass of the forming drop

at the threshold., anda is a parameter. This assumption is
physically based and permits larger modifications and better
control of parameters. Furthermore, by changing the initial
positionx, of each forming drop by an amount that depends
on the mass of the falling drop, the rebound is enhanced, thus
allowing the reproduction of a wide class of chaotic attrac-
tors, which present characteristics very similar to those de-
termined experimentally.

Assuming the falling drogof density p) to be spherical
with radiusr=(3AM/4mp)*3 the rebound of the residue
in our previous
studies(i) a pointlike residue is supposed, situated at the
osition xg=X.—rAM/M_ (point-spheremode); and (ii) a
Spherical residue of radius =[3(M,— AM)/4mp]*3is left
with its center at a distancey=x.—(r+r")AM/M_. from
Ghe origin (two-spheremode).

The mechanism of detachment does not necessarily rep-
resent the actual behavior of the drop, and serves only to
ﬁatablish the initial conditions for the center of mass of the
residue liquid after the break away of the drop and the fol-
lowing recoil. The present paper deals mainly with the nu-
merical study of the point-sphe(®S and two-spheréTS)
models, and a comparison of their features. These investiga-
tions are performed by calculating dripping spectra and time
delay diagrams, with both mechanisms of rebound. Subse-
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FIG. 7. TS dripping spectrfl (s)] plotted against flow rat® (g/s). The values of the parameters are the same of Fig. 1, but(a)ith
a=0.1 s/cm andb) «=0.05 s/cm.
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FIG. 9. PS bifurcation diagraf (s)] obtained varying. (cm) at R=0.5 g/s; remaining parameters are as in Fig. 1.

qguent variations of the physical parameters are performedthaos to a period-1 attractor through tangent intermittence.
allowing an investigation of the dependence of the spectr&onversely, starting fromR=0.58g/s, a period-doubling
upon the physical characteristics of the experimental apparaeute to chaos is manifest. An enlargement of this last part of
tus. In fact, the model parameters have a correspondendgke spectrum is exhibited in Fig. 3, where a similarity be-
with the physical characteristidforms and dimensionsof  tween these features and those from chaos theory is clearly
the faucet and with the propertiggensity, cohesion and seen.
temperaturg of the fluid. However, it should be observed Inspection of Fig. 1, and the time-delay diagrams of Fig.
that the number of independent parameters of models equd; plotted at selected increasing valuesRpEhow the capa-
tions can be minimized12,14. Our analysis is thus per- bility of the model to exhibit a large variation of dynamics as
formed allowing variations of the parametdts @, andR  the flow rate is varied. The plot of Fig(#@ and the corre-
(and only exceptionallyk, andb with the TS model sponding time series diagram of Fig(ab show periodic

Another papef15] provided an analytical solution which bands with bursts of chaos similar to those evidenced experi-
substitutes the set of differential equatioiis, reduces the mentally in the Figs. 1@) and 12b) of Ref.[9]. The power
computation time, and therefore speeds up an exhaustive egpectrum of Fig. @) exhibits peaks in correspondence of
ploration of the space of parameters. A subsequent work is ifrequencies; and3. The attractor of Fig. @) and the band
progress in order to carry out detailed investigations. with higher density in the corresponding time series diagram
of Fig. 5(b) show a chaotic state characterized by a preva-
lence of time intervals around 0.12 s; the corresponding
power spectrum, reported in Fig®, shows a dominance of

In order to reproduce the complex behavior of the drip-frequencies aroungs and4. The return map of Fig. (@) is
ping faucet, we calculated and recorded the time intervalsery close to the “parabola” obtained experimentally in Ref.
T, between successive drops by integrating numeridalte  [3] and[6] and Fig. 4d) shows that this attractor, by increas-
[13]) the differential equation$l) together with condition ing R, undergoes stretching and folding, and discloses evi-
(2). dence of its own layered structure. The chaotic attractors of

Dripping spectra, obtained by varying the flow r&keare  the region of Fig. 1 aroun®~0.7g/s have predominant fre-
exhibited in Figs. 1 and Tthroughout the paper the time quencies with peaks arouril as is evident from the power
interval unit is the secondFor high values of the flux the spectra of Figs. @) and &d).
integration cannot be continued, because in the simulation In Fig. 7, spectra obtained with the TS model at the same
the falling of the drops becomes a continuous streamvalues of parameter&éexcept fora) of Fig. 1 are plotted.
Throughout, the acceleration due to gravity has been kegfigure fa), calculated witha=0.1 s/cm, shows clearly a
fixed at the value og=980 cm/4. In Fig. 1 we plot the transition from chaos to period-4 behaviorRe=1.1g/s. A
dripping spectrum obtained with the PS model, at values otareful investigation of the corresponding return maps at dif-
parameters corresponding to water and typical eyedropperferent flow rates reveals that the variation Rf produces
Inverse cascade, crisis, and chaotic behavior with periodigenerally small changes in the form of the attractor, an ex-
windows are visible. In Fig. 2, two successive enlargementgeption is the transition from chaotic to multiperiodic pat-
of this spectrum aroun®=0.5 g/s show a transition from terns. A different behavior appears at=0.05 s/cm, as

Ill. DRIPPING SPECTRA AND CHAOTIC ATTRACTORS
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cation maps irR with different dynamical behaviors. How-
(@) , ever, we see no evidence of further advantages in varying
Xc, as it is difficult to determine experimentally the point of
release of the drop, which also depends on the conditions of
equilibrium, and not only on the physical dimension and
form of the nozzle. More interesting is the drawing of drip-
ping time intervals as a function of the parametBsand
k.

| ——

04

0.2

LI B B

L RIS AR S VNN By varying the parameteiR andk, we performed several
© "o 20 300 400 500 600 700 800 900 calculations such as those shown in Fig. 10. One can observe
k  an expected phenomenon: by increasRgthe region of
chaoticity moves to larger values of surface tension in order
(b) to compensate for the increased effect of the gravitational
S force. The transitions from period-1 to chaotic states exhib-
ited in the dripping spectra of Fig. 10 are different: in fact at
low R we have a period-doubling pattern; increasidur-
ther, we have a crisis, whereas a particular behavior is shown
at R=0.6g/s, where the spectrum evolution occurs through
cycle-limit patterns atk=700 dyn/cm, not evident on the
i ' _ : figure because of its scale. Evidence of such a type of tran-
S R S .. 1. .1 sition is shown in the plot of four return maps, reported in
300 400 500 600 B ®  Fig. 11. At largek the states seem to be characterized by the
presence of bands of time drop intervals. Reductiork of
produces, globally, a less diffuse dynamical behavior, as one
can see observing the spectra of Fig. 12 and the attractors of
Fig. 13[compare with the attractors of Figsia#and 4c)].
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From the TS spectrum of Fig. lbtained by varying
X., Maintaining the same values of the parameters of the
spectrum of Fig. @ and forR=0.9g/d, one deduces that,
apart from the transition to a period-1 attractorxgt=0.49
cm, no significant changes in the form of the attractors are
seen. Conversely, by varying the values of the parameter
o ) one obtains the bifurcation diagram of Fig. 1fere
_FIG. 10. Dripping spectréT (s)] as a function ok dyn/ecm at _q 9g/5 andk,=0.25 cm). This spectrum exhibits periodic
different values of the flow rate@ R=0.2, (b) R=0.4, and(c)  inqdows and crisis. We have investigated the region ranging
R=0.6 (units of g/9. The remaining parameters are as in Fig. 1. from k=300 dyn/cm tok=330 dyn/cm which shows an in-
o _ _ ) teresting dynamical behavior. In this part of the spectrum we
shown in Fig. Th): for increasing values oR an evolution have selected four values of the paraméteand in Fig. 16
from chaotic attractors to closed loops i§ qispla_lyed. How+,e report the corresponding return maps. As we can see
ever, apart from the appearance of periodic windows ang,m these delay diagrams, the spectrum exhibits continuous
closed loops, in this case the forms of strange attractors th"f‘rtansitions from the period-1 stat&Big. 16a)], through the
can be obtained by varyinB are also not substantially dif- development of a loofFigs. 16b) and 160)], to a sequence
ferent. Return maps of Fig. 8 shovy typical chaotic attractorsys chaotic patterns leading to the state of Fig(cl6This
relative to the two values o considered, foR=0.650/s.  ansition is initiated by distortion of the loop of Fig. (5 in
In our studies, the TS model seems to present a Wedifyree corners, followed by stretching and folding which lead
dependence of the form of the chaotic attractors on the flow, chagtic attractors. As is also demonstrated experimentally
rate; however we will show in the following section that, on [5], here we find that the lowering of the surface tension
the contrary, by varying suitably (and/or other parameters  proqyces large changes in the dynamics, and reveals the ex-
a larger variety of strange attractors similar to the experimengience of closed-loop states. As we already showed above,

0.1

LI LU L Y M R B

300 400 500 600 700

=

tal ones is obtained. the return maps of Fig. 11 have an analog in the behavior for
PS models but at higk-values. However, it should be noted
IV. VARIATION OF PARAMETERS that such transition happens for TS models at loR&alues,

compensating in some way for the effect of smaller liquid
surface tension.

Dripping time intervals versug. at R=0.5¢g/s are dis- We must observe that, for TS models, a decreagedan
played in Fig. 9, where one can see period-1 regions sepaiso produce, in limited regions, almost the same effect of a
rated from multiperiod and chaotic ones. Drawings of thissuitable reduction ik, as can be deduced by inspection of
type are useful in that they permit the singling out of bifur- Fig. 7(b). This phenomenon can be understood by observing

A. Point-sphere model
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FIG. 12. Bifurcation diagranT (s)] as a function oR (g/s) at k=200 dyn/cm. Parameters are as in Fig. 1.
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experimental datf3—6,9. For the sake of brevity, in Fig. 19
(a) return maps relative only to two of the many cases analyzed
i are reported. Besides the attractor plotted in Fig@nl9
& which reveals clearly its fractal structure, in Fig.(hPwe
show a quaint attractor, which presents itself as a set of “is-
lets,” surrounded with a “cloud” of erratic pointgthese
closed loops are similar to those of FighBof Ref.[5]).

0.3

Tou

0.25

L L

2 r V. REPRODUCING EXPERIMENTAL ATTRACTORS

As remarked previously, the PS model demonstrates a
dependence on the flow rate and spectra which show patterns
very similar to those found experimentall§]. In Fig. 20 we
display a bifurcation diagram obtained with the PS model at
a value of the surface tension significantly smaller than that
of water: as one can see, this spectrum starting from periodic
attractors, presents a rich variety of transitions to chaos and
then, at large values dR, a jump to a period-1 attractor,

, passing through periodic and strange attractors and showing
e b L b L b intermittence, crisis, gap, etc.

.y In order to make a comparison between our experimental
(b) results and model predictions, we have measured and re-
corded dripping intervals using a typical leaky faucet experi-
mental apparatus. In Fig. 21, attractors obtained experimen-
tally by using an aqueous solutigta6] are compared with
return maps calculated from the spectrum of Fig. 20 at two
selected flow rates: as one can clearly see, the similarity
between the attractors is remarkable. The corresponding
power spectra are reported respectively in Fig. 22, where we
can observe that plot&) and (d) reveal an impressive re-
semblance, whereas pldi® and(b) show peak frequencies
near to3 and3, respectively. As far as we know, analogous
reproductions have not been obtained before now.
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3 0178
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0.155 VI. CONCLUSIONS

The present and previous studies show that the description
L of the dynamics of the dripping faucet with a relaxation os-
L S T N SR R BV cillator model presents a great variety of behaviors, included
0.15 0.155 0.16 0.165 017 %175 closed-loop patterns. The analyses presented in this paper
T demonstrate that both models proposed have a good qualita-
tive agreement with the behavior of the actual dripping fau-
FIG. 13. Return mappT, (s)] from the bifurcation diagram of cet. It is shown that with the use of the PS model one is able
Fig. 12 at(a) R=0.11 g/s andb) R=0.135 g/s. to produce spectra, at various values of the flow Rytavith
characteristics that have many experimental counterparts in

that decreasing the depletion Mf has an effect equivalent to the real system. AILOW'T? a_lrlsarge (\j/aln_atloln of the g?ra_meters
reduction of the restoring force. In addition, a reductionrof ©ON€ ¢an observe that the TS model Is also capable, in some

or k can compensate for the larger rebound of TS model§aSes, of rgprodycing features of attrac_tors obtained experi-
with respect to PS models, thus re-establishing a variety ifentally with fluids of low surface tension. Some observa-
the model dynamics. As a consequencgeems to be linked tions must be made. It seems rather clear to us that irregu-
somehow t. larities in the dynamics are characteristic of any relaxation
Guided by previous results, we investigated the effect®scillator with unexpected change and rebound at the thresh-
due to large variations df, andb andx.. For most of the old. Thus dripping faucet models differ in the mechanism
domain of parameters investigated, the system shows thahich simulates the detachment of the drops. So far, we
presence of chaotic attractors. The dripping spectrum fobelieve that the PS model has, with respect to the other mod-
k=1500 dyn/cmb=3.3g/s,x,=0.98 cm, andv=0.34 s/cm els present in the literature, a larger richness of features
is shown in Fig. 17. Two enlargements, reported in Fig. 18which better reproduce the experimental data. The reason is
show the regions where the sudden changes of dynamic#hat the PS moddlor TS mode), after the falling of a drop,
behavior of the faucet occur. merely sets the residual liquid at a higher upward position,
We found that by varying the flow ratB the system thus enhancing the rebound. The results presented in this
exhibits attractors which reproduce the complexity of somepaper suggest that the complexity of the dynamics of the
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FIG. 14. TS dripping spectruffiT (s)] as a function of the critical distancg (cm) at R=0.90 g/s. Other parameters are the same as in
Fig. 7(a).
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FIG. 16. Four discrete time return maps, (s)] of the dripping spectrum of Fig. 15a) k=305, (b) k=310, (c) k=315, and(d)

k=325 (units dyn/cm.
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FIG. 22. Power spectra relative to the delay diagrams of FiguBits as in Fig. &

dripping faucet can be understood if the mechanism at th%gglsytlcal solution$15], can produce more detailed explana-

critical point is analyzed more deeply.
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