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Modeling leaky faucet dynamics

A. D’Innocenzo* and L. Renna†

Dipartimento di Fisica dell’Universita`, 73100 Lecce, Italy
and Istituto Nazionale di Fisica Nucleare, Sezione di Lecce, 73100 Lecce, Italy
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The variety of phenomena showed by a dripping faucet is interpreted in terms of simple one-dimensional
relaxation oscillator models with different mechanisms of release of the drops. These models present most of
the characteristic features of experimental data. Simulations are carried out, in order to link the parameters and
the mechanisms of release of the models to the physical properties of the faucet.@S1063-651X~97!12506-5#

PACS number~s!: 02.70.2c, 47.52.1j
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I. INTRODUCTION

In recent years, there has been increasing interest in
study of dripping faucet dynamics. The suggestion that
drips falling from a leaky faucet might exhibit chaotic tra
sitions as the flow rate is varied was first proposed
Rössler @1#. This prediction was experimentally confirme
afterwards by Shaw and co-workers@2,3#. Since then, the
nonlinear behavior of a dripping faucet during the transit
to chaos has been examined experimentally by several
thors @4–10#. The broad range of dynamical behavior, i
cluding period doubling, hysteresis, and chaos, shown by
dripping faucet, is characteristic of a relaxation oscilla
when internal oscillations are stimulated during the ra
transition after a threshold is reached, and may be foun
many physical systems such as brakes engaged frictional
a rotating shaft, electric relaxation oscillators, or magne
spheric substorms@11#. Thus the dripping faucet presen
itself as a sort of ‘‘guide system’’ for modeling analog phys
cal systems.

In the leaky tap, a continuous flow of water builds up un
the drop, subjected to the weight and to the attractive fo
of the molecules, reaches a threshold point. Then a d
detaches and falls, stimulating a rebound and mechanica
brations in the residual water, affecting the time of formati
of the next drop. Thus the falling drop has influence on
motion of the next forming drop: the time intervalsTn be-
tween successive drop detachments become irregular or
otic at certain values of flow rate.

As for the modeling of the dripping faucet dynamics,
to now the attempts made to explain the phenomena
served, as far as we know, are the variable-mass oscillato
Shaw@2,3#, the electrical analog oscillator of Bernhardt@11#,
the one-dimensional feedback loop of Austin@8#, and, re-
cently, two different models@12,13# which improve upon
Shaw’s variable-mass oscillator.

The purpose of this work is to describe the results
investigations performed by using the modified oscilla
models proposed in@13#, to show the flexibility of these
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models and their capability of reproducing the characteris
of the dynamics of the leaky tap. In Ref.@13# only one of the
models presented in this paper is analyzed, making two
ferent suppositions about the mass of the drop break
away. Conversely, in this paper two different mechanisms
rebound are compared with a single way of formation of
falling drop.

Our studies show that the models reproduce many qu
tative features of the real system, and exhibit attractors v
similar to those found experimentally. In particular, sing
and multiple closed-loop patterns, such as those reporte
Ref. @5#, are obtained; to our knowledge, these structu
have not been reproduced by previous simulation mod
Moreover, the evolution of the loop patterns~from a periodic
state to a chaotic attractor! take place by distortion followed
by folding, and this has an equivalent among the experime
for the actual dripping system.

In the final part of the paper a comparison is made
tween attractors obtained experimentally by us~using an ex-
perimental apparatus similar to that of Wu and Schelly@5#!
and that obtained by simulation. Also from this analysis
good qualitative agreement comes out between nume
and experimental attractors.

The paper is organized as follows. In Sec. II modeling
the dripping faucet dynamics is described, and in Sec.
dripping spectra at increasing flow rate are reported toge
with dripping time delay diagrams obtained at selected v
ues of the flow rate. In Sec. IV results are discussed in c
nection with attractors obtained allowing variations of som
model parameters. The capability of our models of reprod
ing some experimental data is shown in Sec. V. Finally, c
clusions are drawn in Sec. VI.

II. SIMULATION MODELS

The behavior of the dripping faucet can be modeled as
one-dimensional motion of a variable massM attached at a
spring of elastic constantk, subjected to the gravitationa
forceMg and to a frictional force proportional to the spee
v of the growing mass. The set of first-order different
equations of the model are@3#
6776 © 1997 The American Physical Society
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55 6777MODELING LEAKY FAUCET DYNAMICS
FIG. 1. PS dripping spectrum@T~s!# plotted against flow rateR ~g/s!. The values of the parameters are:g5980 cm/s2, xc
50.25 cm, k5475 dyn/cm,b51 g/s, anda50.5 s/cm; 50 points are used at each value ofR, and 43104 points for the whole plot.

FIG. 2. Two successive enlargements of the spectrum of Fig. 1, showing the transition to a period-1 attractor through tangent
tence.~Units as in Fig. 1.!
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FIG. 3. An enlargement of a region of the spectrum of Fig. 1 showing a period-doubling route to chaos~units as in Fig. 1.!

FIG. 4. Dripping time@Tn ~s!# delay diagrams for~a! R50.3,~b! R50.5,~c! R50.65, and~d! R50.7 ~units of g/s!; remaining parameters
and units of time intervals are the same as in Fig. 1.
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FIG. 5. Time series@Tn ~s!# of drip intervals corresponding to attractors of Fig. 4~n is the number of drops!.
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FIG. 6. Power spectra corresponding to the time series of Fig. 5~units of f are drops21!.
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5v,

d~Mv !

dt
5Mg2kx2bv, ~1!

dM

dt
5R,

wherex is the coordinate of the center of mass of the for
ing drop, andR is the flow rate. The spring constantk rep-
resents surface tension, andb represents friction between th
fluid and the faucet. When the drop position exceed
thresholdxc , the massM is suddenly reduced by an amou
proportional to the speed of the drop, thus simulating
falling away of the drop.

As remarked by Bernhard@11#, the nonlinearity required
to yield chaos is the swift change at the thresholdxc . This
change is represented by the release of mass of the drop
by the rebound of the residue water. In our models@13#, and
independently in the relaxation oscillator model of Ref.@12#,
the mass of the falling drop is supposed to be

DM5aMcvc , ~2!
-

a

e

nd

wherevc is the speed andMc the mass of the forming drop
at the thresholdxc , anda is a parameter. This assumption
physically based and permits larger modifications and be
control of parameters. Furthermore, by changing the ini
positionx0 of each forming drop by an amount that depen
on the mass of the falling drop, the rebound is enhanced,
allowing the reproduction of a wide class of chaotic attra
tors, which present characteristics very similar to those
termined experimentally.

Assuming the falling drop~of densityr! to be spherical
with radius r5(3DM /4pr)1/3, the rebound of the residu
liquid can be modeled in a different way; in our previo
studies~i! a pointlike residue is supposed, situated at
position x05xc2rDM /Mc ~point-spheremodel!; and ~ii ! a
spherical residue of radiusr 85@3(Mc2DM )/4pr#1/3 is left
with its center at a distancex05xc2(r1r 8)DM /Mc from
the origin ~two-spheremodel!.

The mechanism of detachment does not necessarily
resent the actual behavior of the drop, and serves only
establish the initial conditions for the center of mass of
residue liquid after the break away of the drop and the f
lowing recoil. The present paper deals mainly with the n
merical study of the point-sphere~PS! and two-sphere~TS!
models, and a comparison of their features. These inves
tions are performed by calculating dripping spectra and ti
delay diagrams, with both mechanisms of rebound. Sub
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FIG. 7. TS dripping spectra@T ~s!# plotted against flow rateR ~g/s!. The values of the parameters are the same of Fig. 1, but with~a!
a50.1 s/cm and~b! a50.05 s/cm.

FIG. 8. Dripping patterns@Tn ~s!# for the spectra of Figs. 7~a! and 7~b! at R50.65 g/s, respectively.
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FIG. 9. PS bifurcation diagram@T ~s!# obtained varyingxc ~cm! at R50.5 g/s; remaining parameters are as in Fig. 1.
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quent variations of the physical parameters are perform
allowing an investigation of the dependence of the spe
upon the physical characteristics of the experimental app
tus. In fact, the model parameters have a correspond
with the physical characteristics~forms and dimensions! of
the faucet and with the properties~density, cohesion and
temperature! of the fluid. However, it should be observe
that the number of independent parameters of models e
tions can be minimized@12,14#. Our analysis is thus per
formed allowing variations of the parametersk, a, andR
~and only exceptionallyxc andb with the TS model!.

Another paper@15# provided an analytical solution whic
substitutes the set of differential equations~1!, reduces the
computation time, and therefore speeds up an exhaustive
ploration of the space of parameters. A subsequent work
progress in order to carry out detailed investigations.

III. DRIPPING SPECTRA AND CHAOTIC ATTRACTORS

In order to reproduce the complex behavior of the dr
ping faucet, we calculated and recorded the time interv
Tn between successive drops by integrating numerically~see
@13#! the differential equations~1! together with condition
~2!.

Dripping spectra, obtained by varying the flow rateR,are
exhibited in Figs. 1 and 7~throughout the paper the tim
interval unit is the second!. For high values of the flux the
integration cannot be continued, because in the simula
the falling of the drops becomes a continuous strea
Throughout, the acceleration due to gravity has been k
fixed at the value ofg5980 cm/s2. In Fig. 1 we plot the
dripping spectrum obtained with the PS model, at values
parameters corresponding to water and typical eyedropp
Inverse cascade, crisis, and chaotic behavior with perio
windows are visible. In Fig. 2, two successive enlargeme
of this spectrum aroundR.0.5 g/s show a transition from
d,
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a-
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chaos to a period-1 attractor through tangent intermitten
Conversely, starting fromR.0.58g/s, a period-doubling
route to chaos is manifest. An enlargement of this last par
the spectrum is exhibited in Fig. 3, where a similarity b
tween these features and those from chaos theory is cle
seen.

Inspection of Fig. 1, and the time-delay diagrams of F
4, plotted at selected increasing values ofR, show the capa-
bility of the model to exhibit a large variation of dynamics
the flow rate is varied. The plot of Fig. 4~a! and the corre-
sponding time series diagram of Fig. 5~a! show periodic
bands with bursts of chaos similar to those evidenced exp
mentally in the Figs. 12~a! and 12~b! of Ref. @9#. The power
spectrum of Fig. 6~a! exhibits peaks in correspondence
frequencies12 and

1
3 . The attractor of Fig. 4~b! and the band

with higher density in the corresponding time series diagr
of Fig. 5~b! show a chaotic state characterized by a pre
lence of time intervals around 0.12 s; the correspond
power spectrum, reported in Fig. 6~b!, shows a dominance o
frequencies around110 and

1
20 . The return map of Fig. 4~c! is

very close to the ‘‘parabola’’ obtained experimentally in Re
@3# and@6# and Fig. 4~d! shows that this attractor, by increa
ing R, undergoes stretching and folding, and discloses e
dence of its own layered structure. The chaotic attractors
the region of Fig. 1 aroundR'0.7g/s have predominant fre
quencies with peaks around12, as is evident from the powe
spectra of Figs. 6~c! and 6~d!.

In Fig. 7, spectra obtained with the TS model at the sa
values of parameters~except fora! of Fig. 1 are plotted.
Figure 7~a!, calculated witha50.1 s/cm, shows clearly a
transition from chaos to period-4 behavior atR>1.1g/s. A
careful investigation of the corresponding return maps at
ferent flow rates reveals that the variation ofR produces
generally small changes in the form of the attractor, an
ception is the transition from chaotic to multiperiodic pa
terns. A different behavior appears ata50.05 s/cm, as
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55 6783MODELING LEAKY FAUCET DYNAMICS
shown in Fig. 7~b!: for increasing values ofR an evolution
from chaotic attractors to closed loops is displayed. How
ever, apart from the appearance of periodic windows an
closed loops, in this case the forms of strange attractors th
can be obtained by varyingR are also not substantially dif-
ferent. Return maps of Fig. 8 show typical chaotic attractor
relative to the two values ofa considered, forR50.65g/s.

In our studies, the TS model seems to present a we
dependence of the form of the chaotic attractors on the flo
rate; however we will show in the following section that, on
the contrary, by varying suitablyk ~and/or other parameters!,
a larger variety of strange attractors similar to the experimen
tal ones is obtained.

IV. VARIATION OF PARAMETERS

A. Point-sphere model

Dripping time intervals versusxc at R50.5g/s are dis-
played in Fig. 9, where one can see period-1 regions sep
rated from multiperiod and chaotic ones. Drawings of thi
type are useful in that they permit the singling out of bifur-

FIG. 10. Dripping spectra@T ~s!# as a function ofk dyn/cm at
different values of the flow rate:~a! R50.2, ~b! R50.4, and~c!
R50.6 ~units of g/s!. The remaining parameters are as in Fig. 1.
-
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cation maps inR with different dynamical behaviors. How
ever, we see no evidence of further advantages in vary
xc , as it is difficult to determine experimentally the point
release of the drop, which also depends on the condition
equilibrium, and not only on the physical dimension a
form of the nozzle. More interesting is the drawing of dri
ping time intervals as a function of the parametersR and
k.

By varying the parametersR andk, we performed severa
calculations such as those shown in Fig. 10. One can obs
an expected phenomenon: by increasingR, the region of
chaoticity moves to larger values of surface tension in or
to compensate for the increased effect of the gravitatio
force. The transitions from period-1 to chaotic states exh
ited in the dripping spectra of Fig. 10 are different: in fact
low R we have a period-doubling pattern; increasingR fur-
ther, we have a crisis, whereas a particular behavior is sh
at R50.6g/s, where the spectrum evolution occurs throu
cycle-limit patterns atk.700 dyn/cm, not evident on the
figure because of its scale. Evidence of such a type of tr
sition is shown in the plot of four return maps, reported
Fig. 11. At largek the states seem to be characterized by
presence of bands of time drop intervals. Reduction ok
produces, globally, a less diffuse dynamical behavior, as
can see observing the spectra of Fig. 12 and the attracto
Fig. 13 @compare with the attractors of Figs. 4~a! and 4~c!#.

B. Two-sphere model

From the TS spectrum of Fig. 14@obtained by varying
xc , maintaining the same values of the parameters of
spectrum of Fig. 7~a! and forR50.9g/s#, one deduces that
apart from the transition to a period-1 attractor atxc.0.49
cm, no significant changes in the form of the attractors
seen. Conversely, by varying the values of the parametek,
one obtains the bifurcation diagram of Fig. 15~here
r50.9g/s andxc50.25 cm!. This spectrum exhibits periodic
windows and crisis. We have investigated the region rang
from k>300 dyn/cm tok>330 dyn/cm which shows an in
teresting dynamical behavior. In this part of the spectrum
have selected four values of the parameterk, and in Fig. 16
we report the corresponding return maps. As we can
from these delay diagrams, the spectrum exhibits continu
transitions from the period-1 states@Fig. 16~a!#, through the
development of a loop@Figs. 16~b! and 16~c!#, to a sequence
of chaotic patterns leading to the state of Fig. 16~c!. This
transition is initiated by distortion of the loop of Fig. 16~b! in
three corners, followed by stretching and folding which le
to chaotic attractors. As is also demonstrated experiment
@5#, here we find that the lowering of the surface tensi
produces large changes in the dynamics, and reveals the
istence of closed-loop states. As we already showed ab
the return maps of Fig. 11 have an analog in the behavior
PS models but at high-k values. However, it should be note
that such transition happens for TS models at lowerR values,
compensating in some way for the effect of smaller liqu
surface tension.

We must observe that, for TS models, a decrease ina can
also produce, in limited regions, almost the same effect o
suitable reduction ink, as can be deduced by inspection
Fig. 7~b!. This phenomenon can be understood by observ
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FIG. 11. Time delay@Tn . ~s!# diagrams atR50.6 g/s@from the spectrum of Fig. 10~c!# and~a! k5700, ~b! k5705, ~c! k5710, and~d!
k5720 ~units dyn/cm!. When increasingk, a transition from a limit cycle to chaotic attractors is clearly seen.

FIG. 12. Bifurcation diagram@T ~s!# as a function ofR ~g/s! at k5200 dyn/cm. Parameters are as in Fig. 1.
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55 6785MODELING LEAKY FAUCET DYNAMICS
that decreasing the depletion ofM has an effect equivalent to
reduction of the restoring force. In addition, a reduction ofa
or k can compensate for the larger rebound of TS mod
with respect to PS models, thus re-establishing a variety
the model dynamics. As a consequencea seems to be linked
somehow tok.

Guided by previous results, we investigated the effe
due to large variations ofk, andb andxc . For most of the
domain of parameters investigated, the system shows
presence of chaotic attractors. The dripping spectrum
k51500 dyn/cm,b53.3g/s,xc50.98 cm, anda50.34 s/cm
is shown in Fig. 17. Two enlargements, reported in Fig. 1
show the regions where the sudden changes of dynam
behavior of the faucet occur.

We found that by varying the flow rateR the system
exhibits attractors which reproduce the complexity of som

FIG. 13. Return maps@Tn ~s!# from the bifurcation diagram of
Fig. 12 at~a! R50.11 g/s and~b! R50.135 g/s.
ls
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experimental data@3–6,9#. For the sake of brevity, in Fig. 19
return maps relative only to two of the many cases analy
are reported. Besides the attractor plotted in Fig. 19~a!,
which reveals clearly its fractal structure, in Fig. 19~b! we
show a quaint attractor, which presents itself as a set of ‘
lets,’’ surrounded with a ‘‘cloud’’ of erratic points~these
closed loops are similar to those of Fig. 8~b! of Ref. @5#!.

V. REPRODUCING EXPERIMENTAL ATTRACTORS

As remarked previously, the PS model demonstrate
dependence on the flow rate and spectra which show patt
very similar to those found experimentally@5#. In Fig. 20 we
display a bifurcation diagram obtained with the PS mode
a value of the surface tension significantly smaller than t
of water: as one can see, this spectrum starting from perio
attractors, presents a rich variety of transitions to chaos
then, at large values ofR, a jump to a period-1 attractor
passing through periodic and strange attractors and show
intermittence, crisis, gap, etc.

In order to make a comparison between our experime
results and model predictions, we have measured and
corded dripping intervals using a typical leaky faucet expe
mental apparatus. In Fig. 21, attractors obtained experim
tally by using an aqueous solution@16# are compared with
return maps calculated from the spectrum of Fig. 20 at t
selected flow rates: as one can clearly see, the simila
between the attractors is remarkable. The correspond
power spectra are reported respectively in Fig. 22, where
can observe that plots~c! and ~d! reveal an impressive re
semblance, whereas plots~a! and~b! show peak frequencie
near to1

2 and
1
3 , respectively. As far as we know, analogo

reproductions have not been obtained before now.

VI. CONCLUSIONS

The present and previous studies show that the descrip
of the dynamics of the dripping faucet with a relaxation o
cillator model presents a great variety of behaviors, includ
closed-loop patterns. The analyses presented in this p
demonstrate that both models proposed have a good qua
tive agreement with the behavior of the actual dripping fa
cet. It is shown that with the use of the PS model one is a
to produce spectra, at various values of the flow rateR, with
characteristics that have many experimental counterpart
the real system. Allowing a large variation of the paramet
one can observe that the TS model is also capable, in s
cases, of reproducing features of attractors obtained exp
mentally with fluids of low surface tension. Some observ
tions must be made. It seems rather clear to us that irre
larities in the dynamics are characteristic of any relaxat
oscillator with unexpected change and rebound at the thr
old. Thus dripping faucet models differ in the mechanis
which simulates the detachment of the drops. So far,
believe that the PS model has, with respect to the other m
els present in the literature, a larger richness of featu
which better reproduce the experimental data. The reaso
that the PS model~or TS model!, after the falling of a drop,
merely sets the residual liquid at a higher upward positi
thus enhancing the rebound. The results presented in
paper suggest that the complexity of the dynamics of
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FIG. 14. TS dripping spectrum@T ~s!# as a function of the critical distancexc ~cm! atR50.90 g/s. Other parameters are the same a
Fig. 7~a!.

FIG. 15. Dripping spectrum@T ~s!# as a function of the parameterk dyn/cm atR50.90 g/s andxc50.25 cm. Other parameters are th
same as in Fig. 7~a!.
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FIG. 16. Four discrete time return maps@Tn ~s!# of the dripping spectrum of Fig. 15:~a! k5305, ~b! k5310, ~c! k5315, and~d!
k5325 ~units dyn/cm!.

FIG. 17. Dripping spectrum@T ~s!# as a function ofR ~g/s!. The values of the parameters are:g5980 cm/s2, xc50.98 cm,k51500
dyn/cm,b53.3 g/s, anda50.34 s/cm.
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FIG. 18. Two region enlargements of the spectrum of Fig. 17~units as in Fig. 17!.

FIG. 19. Dripping time@Tn ~s!# delay diagrams from the spectrum of Fig. 17 at~a! R50.2 g/s and~b! R50.362 g/s.
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FIG. 20. PS bifurcation diagram@T ~s!# as function ofR ~g/s! at k5120 dyn/cm. Parameters are as in Fig. 1.

FIG. 21. Comparison between experimental and PS attractors@Tn ~s!#. ~a! Experimental attractor for an aqueous solution of surfa
tensiont.36 dyn/cm atR.0.57 g/s for abrass nozzle with an inner diameter of 0.2 cm and an outer diameter of 0.4 cm.~b! Return map
from the dripping spectrum of Fig. 19 atR50.05 g/s.~c! Experimental attractor for the same solution atR.0.61 g/s.~d! Return map at
R50.12 g/s.
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FIG. 22. Power spectra relative to the delay diagrams of Fig. 21~units as in Fig. 6!.
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dripping faucet can be understood if the mechanism at
critical point is analyzed more deeply.

We are aware that the state of the research is still far fr
furnishing precise answers, but we believe that the poss
ity of exhaustive investigations, provided by the use
m

e

.
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e

m
il-
f

analytical solutions@15#, can produce more detailed explan
tions.
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@4# H. N. Núñez Yépez, A. L. Salas Brito, C. A. Vargas, and L. A
Vicente, Eur. J. Phys.10, 99 ~1989!.

@5# X. Wu, E. Tekle, and Z. A. Schelly, Rev. Sci. Instrum.60,
3779 ~1989!; X. Wu and Z. A. Schelly, Physica D40, 433
~1989!.

@6# R. F. Cahalan, H. Leidecker, and G. D. Calahan, Comp
Phys.4, 368 ~1990!.

@7# K. Dreyer and F. R. Hickey, Am. J. Phys.59, 619 ~1991!.
@8# J. Austin, Phys. Lett. A155, 148 ~1991!.
tt.

t.

@9# J. C. Sartorelli, W. M. Gonc¸alves, and R. D. Pinto, Phys. Rev
E 49, 3963~1994!.
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